

MATERIAL SAFETY DATA SHEET BARE COPPER WELDING RODS & ELECTRODES

1. PRODUCT AND COMPANY DESIGNATION

Product Name: BARE COPPER WELDING RODS & ELECTRODES

Product Specification AWS A5.7

Product Classification: ERCu, ERCuSi, ERCuSn, ERCuNi, ERCuAl,

ERCuNiAl, ERCuMnNiAl,

Recommended use: Gas Metal Arc, Gas Tungsten Arc, and Oxy Fuel Gas

welding of Copper

Supplier: Afrox

Address: P.O. Box 207, Germiston, 1400

Telephone number: 086020202 **Telefax:** (011) 821-3006

2. DETAILS OF COMPOSITION

These wires and rods are made from solid copper alloys. The composition of the alloys varies depending on the classification. Supplied on either continuously wound reels, spools or in bulk packs and straight cut lengths. Specific details of the composition of the wire and rods covered by this data sheet are given below.

TABLE 1: APPROXIMATE COMPOSITION OF CONSUMABLES (WT %)

AWS Spec	Class	Cu (incl Ag)	Zn	Sn	Mn	Fe	Si	Ni (incl. Co)	Al	Ti
A5.07	ERCu	98 min	-	1.0	0.50		0.50		0.01	
A5.07	ERCuSi	Bal.	1.0	1.0	1.5	0.50	2.8-4.0	-	0.01	-
A5.07	ERCuSn	Bal.	-	4.0-6.0					0.01	
A5.07	ERCuNi	Bal.	-	-	1.0	0.40-0.75	0.25	29.0-32.0	-	0.20-0.50
A5.07	ERCuAl	Bal.	0.20	-	0.50	4.5	0.10	-	6.0-11.5	-
A5.07	ERCuNi Al	Bal	0.10		0.6-3.50	3.0-5.0	0.10	4.0-5.50	8.50-9.50	-
A5.07	ERCuM nNiAl	Bal.	0.15	ŀ	11.0-14.0	2.0-4.0	0.10	1.5-3.0	7.0-8.5	-

Single values indicate maximum allowed.

3. HAZARDS IDENTIFICATION

There are no recognised hazards associated directly with unused welding consumables prior to welding. Packaged consumables may be heavy, and should be handled and stored with care. FOLLOW MANUAL HANDLING REGULATIONS.

Wire wound on reels or spools, or supplied in bulk packages can be coiled under tension. Take care to avoid the wire uncoiling rapidly when released. WEAR GLOVES AND EYE PROTECTION.

Some low levels of dust may be produced during handling. DO NOT BREATHE THE DUST.

When using these wires and rods as part of the welding process additional potential hazards are likely:

These are:

- Electric shock from the welding equipment or electrode. This can be fatal.
- Hot metal spatter and heat, which can cause burns to the hand and body, and may cause fire if in contact with combustible materials.
- UV, IR and light radiation from the arc, which can produce 'arc eye' and possible eye damage to unprotected eyes. WEAR SUITABLE PROTECTIVE EQUIPMENT.
- Fumes produced from the welding consumable, material being welded, and the arc radiation:
 - Particulate fume such as metallic fume and complex metal oxides and silicates from the weld materials.
 - Gaseous fume such as ozone and nitrogen oxides from the action
 of arc radiation on the atmosphere, and carbon monoxide and
 dioxide from oxidation of carbon in the components, and from the
 shielding gas.

SHORT TERM INHALATION OF THESE FUMES AND GASES MAY LEAD TO IRRITATION OF THE NOSE, THROAT AND EYES.

LONG TERM OVEREXPOSURE OR INHALATION OF HIGH LEVELS OF FUMES MAY RESULT IN HARMFUL EFFECTS TO THE RESPIRATORY SYSTEM, CENTRAL NERVOUS SYSTEM AND LUNGS.

LOCAL EXTRACTION AND /OR VENTILATION SHOULD BE USED TO ENSURE THAT ALL HAZARDOUS INGREDIENTS IN THE FUME ARE KEPT BELOW THEIR INDIVIDUAL OCCUPATIONAL EXPOSURE STANDARDS IN THE WELDER'S AND OTHER WORKERS' BREATHING ZONES.

NOTE: If welding is performed on plated or coated materials such as galvanised steel, excessive fume may be produced which contains additional hazardous components, and may result in metal fume fever and other health effects.

4. FIRST AID MEASURES

No first aid measures should be required for the unused wire and rod consumables. During welding:

Inhalation

If breathing is difficult, bring the patient in fresh air; breathe in fresh air

deeply. For skin burns

Submerge affected area in cold water until burning sensation ceases and refer for immediate medical attention.

For eye effects such as arc eye and dusts

Irrigate eye with sterile water, cover with damp dressing and refer for

immediate medical attention if irritation persists.

Ingestion

Ingestion is considered unlikely due to product form. However, if swallowed do not induce vomiting. Seek medical attention. Advice to doctor: treat symptomatically.

Electric shock

If necessary resuscitate and seek immediate medical attention.

5. FIRE PREVENTION MEASURES

No specific measures required for the welding consumable prior to welding. Welding should not be carried out in the presence of flammable materials, vapours, tanks, cisterns and pipes and other containers, which have held flammable substances unless these have been checked and certified safe.

6. MEASURES IN CASE OF UNINTENTIONAL RELEASE

No specific actions for welding consumable prior to use. Welding in proximity to stored or used halogenated solvents may produce toxic and irritant gases. Prohibit welding in areas where these solvents are used.

7. HANDLING AND STORAGE (FOR SAFETY)

No special precautions are required for these welding consumables. Welding wires and rods are dense materials and can give rise to a handling hazard when reels, spools, bulk packs and multiple packages are lifted or handled incorrectly or with poor lifting posture.

Good practice for handling and storage should be adopted to prevent physical injuries.

8. EXPOSURE PREVENTION/CONTROLS/PERSONAL PROTECTION

Exposure Prevention

Welders should not touch live electrical parts, and should insulate themselves from the work and the ground. Manufacturer's guidelines for the use of electrical welding machines should be observed at all times.

Welders and co-workers should be educated about the health hazards associated with welding fume, and trained to keep their heads out of the fume plume.

During welding, fumes and gases will be produced and emitted from the welding process. The content of the fume is dependent on the welding consumables, shielding gas and base materials being welded. The amount and concentration of fume generated is dependent on factors such as current, voltage welding practices and number of welders in a given area. By following recommended welding practices, fume production can sometimes be minimised.

For the solid copper wires and rods covered by this data sheet, the main constituents of the fume will be copper, manganese, tin, nickel, iron and aluminium oxides and silicates, mainly in the form of complex compounds. There will also be smaller amounts of other complex metal oxides and silicates.

Gaseous ozone and nitrous oxides are also formed by arc radiation, and carbon monoxide and carbon dioxide can also be present due to oxidation of carbon in the components, and from the flame combustion products. In some cases ozone levels can be high, and additional controls may be needed. The shielding gas used will also affect the fume formation rate, and higher levels of particulate fume will be generated of carbon dioxide and oxygen is increased in the shielding gas.

Fume Composition data for the main solid copper wires and rods are given below.

Fume exposure should be controlled to below the recognised exposure limit for each of the individual constituents, and to below 5 mgm/m3 for the total particulate fume.

TABLE 2: FUME COMPOSITION DATA (WT%)

Classification	Cu	Fe	Mn	Sn	Ni	Al	Si
ERCuAl	Bal.	0-8	0-2	<1	<1	3-6	0-2
ERCuSi	Bal.	0-8	2-3	<1	<1	<1	2-8
Others	Ral	0-10*	0-50*	0-10*	0-40*	0-10*	0-2*

^{*} Indicates estimate, based on consumable composition

TABLE 3: HAZARDOUS FUME COMPONENTS

Welding fume component	CAS No.	OEL ¹ 8hr TWA	STEL ¹ 15min TWA
Total welding fume (particulate)	-	5	_
Copper	7440-50-8	0.2	
Aluminium Oxides	1344-28-1		
Total inhalable dust		10	
Respirable dust		4	
Iron oxide fume (as Fe)	1309-37-1	5	10
Manganese and its inorganic compounds (as Mn)	7439-96-5	0.5	
Silica, amorphous	-		
(Total inhalable dust)		6	
(Respirable dust)		2.4	
Tin compounds, inorganic (as Sn)	7440-31-5	2	4
Nickel and its inorganic compounds			
Water soluble		0.1	
Water insoluble		0.5	
Zinc oxide, fume	1314-13-2	5	10
Carbon Dioxide	124-38-9	5000ppm	15000ppm
Carbon Monoxide	630-08-0	30ppm	200ppm
Nitrogen dioxide (NO ₂)	10102-44-0	3ppm	5ppm
Ozone (O ₃)	10028-15-6	0.2 ppm	
Nitrogen monoxide (NO)	10102-43-9	25ppm	35ppm

Units are in mgm/m3, except when stated otherwise

The fume analyses for the solid copper wires and rods covered by this data sheet, and used for welding clean, uncoated copper indicate that as long as the 5 mgm/m³ total fume exposure limits are met, fume levels of the other constituents will generally be below their respective exposure limits.

The exceptions are manganese, nickel, copper, ozone and nitrogen dioxide (when electric arc welding), and carbon monoxide (when gas welding). These have low exposure limits and additional controls may be required.

THE FUME LEVELS GIVEN ABOVE WERE GENERATED UNDER LABORATORY CONDITIONS WHEN WELDING CLEAN, PLAIN UNCOATED COPPER UNDER THE MANUFACTURERS RECOMMENDED WELDING PARAMETERS, AND ARE INDICATIVE OF REASONABLY EXPECTED FUME LEVELS. ACTUAL FUME LEVELS WILL VARY IN PRACTICE, DEPENDING ON THE WELDING PARAMETERS AND OTHER CONDITIONS, AND MAY BE HIGHER OR LOWER THAN THOSE LISTED ABOVE.

ADDITIONAL FUME MAY ARISE WHEN THESE WIRES AND RODS ARE USED TO WELD CONTAMINATED BASE MATERIALS, COATED OR PLATED STEELS, OTHER METALS AND ALLOYS, OR WHEN INCORRECT WELDING CONDITIONS ARE USED.

THE ONLY ACCURATE WAY TO DETERMINE THE COMPOSITION AND QUANTITY OF FUMES AND GASES TO WHICH WORKERS ARE EXPOSED IS TO TAKE AIR SAMPLES FROM INSIDE THE WELDERS HELMET, IF WORN, OR IN THE WORKER'S BREATHING ZONES.

Individual fume measurements should be made in these cases using recognised sampling and analysis standards. Based on the results of these measurements, additional fume controls may be required to ensure that all the fume constituents are controlled below their exposure limits.

Controls

Good general ventilation, and/or local fume extraction at the arc or flame should be used to control the fumes and gases produced during welding to below their individual recognised exposure limits when measured in the welder's and co-workers' breathing zone. In addition the ventilation and extraction should also be sufficient to ensure that the total particulate fume levels are reduced below 5mgm/m3 when measured in the breathing zone. In confined spaces where ventilation is not adequate, an air fed breathing system should be used. All precautions for working in confined space should be observed. Refer to OHS Act No.85 of 1993 General Safety Regulation 9. For further information see the American National Standard Z49.1 Safety in Welding and Cutting and SABS 0238 (SANS 10238) Welding and Thermal Cutting Processes-Health and Safety.

Where fume levels exceed the recognised exposure limits, respiratory protection may be required in the form of a Class P2 (metal fume) respirator. Personal Protection

Welders and co-workers in the vicinity should wear protective clothing and eve protection appropriate to the welding process being used, as specified by local standards.

Protection of Body and Skin

Suitable clothes for welding should be worn such as non-light reflective fireproof overalls, leather apron, welding helmet (for arc welding), and suitable head protection and welding goggles (for gas welding), leather boots spats and gloves.

Protection of Hands

Welders should wear suitable hand protection such a welding gloves or gauntlets of a suitable standard. Co-workers should also wear suitable hand protection against hot metal, sparks and spatter.

Eve Protection

Welders should wear a welding helmet fitted with the appropriate optical welding filter for the operation. Suitable protective welding screens and goggles should be provided, and used by others working in the same area.

Physical and chemical properties

Physical state: Solid

Colour: Copper metallic coloured Form: metal wire or rods

Odour: Odourless PH: Not available

Vapour pressure: Not relevant Vapour Density: Not relevant Boiling point / range: Not relevant Melting Point: ~1100°C Solubility in water: Insoluble Density: Not available

Explosive / ignition point: non-flammable. No fire or explosion hazard exists

Stability and reactivity

There are no stability or reactivity hazards from welding wires or rods as supplied.

Hazardous decomposition products such as metal oxide fumes and gases (see Section 8) are produced during welding.

Toxicity data

Welding fumes if inhaled can potentially produce several differing health effects caused by the metal containing particles and the gases produced during the welding process, both of which are present in the 'fumes'. The exact nature of any likely health effect is dependent on the consumable, material being welded, weld process, all of which affect fume quantity and composition, as well as the use of adequate ventilation, respirators, or breathing equipment as circumstances require.

Inhalation of the fumes/gases produced during welding may lead to irritation to the nose throat and eyes. The range of health effects include respiratory effects with symptoms such as asthma, impaired respiratory and lung function, chronic bronchitis, metal fume fever, pneumoconiosis, possible emphysema and acute pulmonary oedema.

Other potential health effects at elevated levels of exposure include central nervous effects possible lung cancer, bone disease, skin and fertility effects. Which of these health effects is potentially likely is related to the fume composition, and this needs to be consulted with the specific toxicity data below to assess the health risk when using any particular welding process.

Unprotected skin exposed to UV and IR radiation from the welding arc may burn or redden, and UV radiation is potentially a carcinogen. UV radiation can affect the unprotected eye by producing an acute condition known as 'arc eye'. Specific effects relevant to major particulate and gaseous fume constituents produced when welding with these wires and rods

Copper and Zinc

Copper and zinc in welding fume is the main cause of any metal fume fever observed during welding. Metal fume fever is a delayed respiratory effect produced by inhalation of fume. Symptoms include sweating, chills, fever, muscle aches and high temperature. These acute symptoms normally alleviate within 24-48 hours

Aluminium

Aluminium has been associated with a type of lung pneumoconiosis named 'Shavers disease' and a possible causative agent of Alzheimer's disease. In both cases any association with this and welding fume exposure is unproven.

Iron oxide is generally considered a nuisance material and unlikely to cause any significant health effects. The fume particles however accumulate in the lungs and lead to a benign pneumoconiosis called siderosis.

Manganese

Manganese compounds are found in copper alloy welding fumes. Manganese is mainly a systemic chronic toxin, although exposure to high particulate concentrations can cause some respiratory irritation.

Overexposure or inhalation of excessive amounts of manganese has been shown to affect pulmonary function, blood and may cause irreversible central nervous system damage (manganese), which resembles Parkinson's disease. Symptoms of manganism include tremors, impaired speech, facial expression changes, slow clumsy movements and eventually impaired walking. The symptoms are typically not apparent for several years.

Tin (inorganic) generally exhibits low toxicity to humans, but if inhaled as a dust or fume can cause a benign pneumoconiosis - known as stannosis. This condition shows no massive fibrosis, no evidence of disability or complicating factors

Nickel

The main health effects of nickel are skin dermatitis (nickel 'itch') and it being classified as a potential human lung carcinogen. It may also cause nasal cancer.

Silica

Silica is found in welding fumes produced by copper alloy wires and rods, and is produced mainly as amorphous silica. This form of silica has not been associated to any significant degree with lung pneumoconiosis that is associated with crystalline forms of silica.

Ozone and Nitrogen oxides.

In electric arc welding, these gases are formed due to interactions of the arc with the surrounding air. Both gases can produce eye, respiratory and lung irritation and also can produce longer-term lung effects such as decreased lung capacity, chronic bronchitis, and emphysema. Of particular concern with both gases is that exposure to high levels (eg due to build up in confined spaces) can result in acute lung effects such as delayed pulmonary oedema.

Carbon monoxide and carbon dioxide.

Carbon monoxide (CO) is a chemical asphyxiant and its toxicity is due to its affinity for oxygen carrying blood haemoglobin causing fatigue, weakness, dizziness and eventual unconsciousness and possible death. Carbon dioxide (CO₂) is mainly an asphyxiant but can exert some toxic properties by increasing pulse and heart rate. During the normal uses of these wires and rods, these gases can be produced by oxidation of carbon in the components and from the flame combustion products.

Ecological data

The welding process produces particulate fumes and gases, which may cause long-term adverse effects in the environment if released directly into the atmosphere. Welding fumes from the normal use of the copper wires and rods covered by this data sheet can produce carbon dioxide gas, which is dangerous to the ozone layer.

Disposal data

Packaging and wire/rod scrap should be disposed of as general waste or recycled. No special precautions are required for this product.

Transport information

No special requirements are necessary in transporting these products **Regulations**

- OHS Act No 85 of 1993 general Safety Regulation 9.
- SABS 0238 (SANS 10238) Welding and Thermal Cutting Processes – Health and Safety.

Other information

The customer should provide this Materials Safety Data Sheet to any person involved in the materials use or further distribution. BOC requests the users (or distributors) of this product to read this Materials Safety Data Sheet carefully before usage. Further information can be obtained from the American National Standard Z49.1 Safety in Welding and Cutting.

The information contained in this Material Safety Data Sheet relates only to the specific materials designated and may not be valid for such material used in combination with any other material or in any process.

Information is given in good faith and is based on the latest information available to Afrox and is, to the best of Afrox's knowledge and belief, accurate and reliable at the time of preparation. However, no representation, warranty or guarantee is made as to the accuracy, reliability or completeness of the information, and BOC assumes no responsibility and disclaims any liability incurred in using this information.

The product is supplied on the condition that the user accepts the responsibility to satisfy himself as to the suitability and completeness of such information for his own particular use. Freedom from patent rights must not be assumed.